Tag Archives: macular degeneration

These Light Bulbs Can Potentially Destroy Your Eyes

https://www.bitchute.com/embed/xYDnJa8NAVB2/

Download Interview Transcript Download my FREE Podcast Video Link

Story at-a-glance

  • LEDs emit nonanalog light that typically has excessive blue frequencies. Regular exposure, especially after sunset, will contribute to worsening of sleep and an increase in disease
  • When using LEDs, you might end up with increased cellular damage and decreased repair and regeneration
  • You have cells in your retina responsible for producing melatonin, which regenerates the retina during the night. If you use LED lights after sunset, you reduce the regenerative and restoring capacities of your eyes, raising your risk for macular degeneration, a leading cause of blindness
  • LED light can exacerbate chronic disease of all kinds by promoting mitochondrial dysfunction and suppressing energy production in your cells
  • LED light, including that from electronic screens, suppresses melatonin production, thereby disrupting sleep, which also has far-reaching health consequences

Editor’s Note: This article is a reprint. It was originally published January 30, 2019.

The amount and quality of light you’re exposed to every day can have an enormous impact on your health. The healthiest light, of course, is natural sunlight, which has a number of benefits beyond the making of vitamin D in your skin. Unfortunately, most of us spend very little time outdoors during the daytime, thereby missing this important health component.

What’s worse, most have replaced their incandescent light bulbs — which most closely resemble full spectrum analog natural sunlight — with energy-saving light-emitting diode (LED) lights, which have a number of detrimental biological effects.

LEDs emit a large amount of aggressive blue light that generates high amounts of reactive oxygen species (ROS) and oxidative stress, and are devoid of near-infrared light that would help counteract some of that damage.

Here, I review some of the top dangers of LED lights, and provide guidance for how to remediate these issues to protect your health. Above, I’ve also included my October 2016 interview with Dr. Alexander Wunsch, a world class expert on photobiology, in which he reveals the hidden dangers of LED lighting that most people are completely unaware of.

The main problem with LEDs comprises two aspects: First, they emit excessive amounts of blue wavelengths, which are embedded in other wavelengths and therefore invisible to the naked eye and, second, their spectrum lacks the counterbalancing healing and regenerative near-infrared frequencies. They have very little red in them, and no infrared, which is the wavelength required for repair and regeneration.

When you are exposed to these higher amounts of blue light frequencies they catalyze excess ROS formation that contributes to biologic damage. So, when using LEDs, you end up with increased cellular damage and decreased repair and regeneration. The end result, as one would expect, is a higher risk for chronic disease and an impaired ability to heal.

Danger No. 1: LED Lighting Deteriorates Vision

As mentioned, virtually all LED lighting bulbs have no near-infrared frequencies to balance their blue light frequencies. The near-infrared frequencies are especially valuable for healing and affect your health in a number of important ways. In your eyes, near-infrared helps priming your retinal cells for repair and regeneration.

In addition, LEDs emit an excess of digital blue light, that in combination with a deficiency of the near infrared frequencies, generates ROS. Taken together, this explains why LEDs are so harmful for your eyes in particular.

You probably know that blue light in the evening reduces your melatonin production in your pineal gland. But you also have cells in your retina that are responsible for producing melatonin in order to help regenerate your retina during the night.

If you use LED lights after sunset, you reduce the regenerative and restoring capacities of your eyes. Needless to say, with less regeneration you end up with degeneration. In this case, the degeneration can lead to age-related macular degeneration, which is the primary cause of blindness among the elderly.

Lack of sunlight exposure during the day has also been implicated in the massive rise in myopia (nearsightedness).1 Sunlight releases dopamine in your retina, slowing the growth of your eye and therefore possibly slowing the elongation of the eye and changes to your sight.2

Blue light also reduces your production of melatonin which, beyond impeding sleep, also increases your risk of insulin resistance, which also raises your risk of myopia.3

Danger No. 2: LED Light Exacerbates Chronic Disease

Importantly, LED light affects your mitochondrial function and may exacerbate health problems rooted in mitochondrial dysfunction, including metabolic disorder and cancer.

Chromophores are molecules that absorb light. There’s an optical tissue window ranging from 600 to 1,400 nanometers, which means it is almost completely covered by the near-infrared part of the light spectrum. This optical tissue window allows the radiation to penetrate an inch or more into bodily tissues.

Chromophores are found in your mitochondria and in activated water molecules. In your mitochondria, there’s also a specific molecule called cytochrome c oxidase that is involved in the energy production within the mitochondria. Adenosine triphosphate (ATP) — cellular energy — is the end product.

ATP is the fuel your cells need for all of their varied functions, including ion transport, synthesizing and metabolism. Your body produces your body weight in ATP every day. And, while you can survive for several minutes without oxygen, were all ATP production to suddenly stop, you’d die within 15 seconds. This is why lighting is so important.

Light is a sorely misunderstood and overlooked part of the equation for biological energy production, specifically at the mitochondrial ATP level. Since the cytochrome c oxidase is responsible for an increased production of ATP, the cell has a better supply of energy, which allows it to perform better, and this is true no matter where the cell resides.

This means liver cells with more ATP will be able to detoxify your body more efficiently; fibroblasts in your skin will be able to synthesize more collagen fibers and so on, because ATP is crucial for all cellular functions.

The key take-home message here is that your body’s energy production involves not just food intake. You also need exposure to certain wavelengths of light in order for your metabolism to function optimally. This is yet another reason why sun exposure is so vitally important for optimal health, and why LED light bulbs are best avoided.

Download this Article Before it Disappears

Download PDF

Danger No. 3: LED Light Impedes Your Sleep

LED light, including that from electronic screens, also suppresses melatonin production, thereby disrupting sleep, and this too can have far-reaching consequences for your health. Light-sensitive cells in your eyes track blue light, which in turn triggers different processes in your suprachiasmatic nucleus, a small region in your brain’s hypothalamus.

Among them is relaying to your pineal gland the news that when there is a lot of blue light, the production of melatonin should stop to facilitate wakefulness. Under normal conditions, as the sun sets and blue light decreases, production of melatonin increases, which helps you fall asleep.

However, if you’re exposed to unopposed blue enriched LED light, especially if it is bright, in the evening this sequence is interrupted, resulting in sleep problems. Indeed, research4 confirms that “blue light from LEDs elicits a dose-dependent suppression of melatonin in humans.”

Looking at a tablet for even two hours in the evening is enough to suppress your body’s natural nighttime rise of this hormone,5 and research6,7 shows using an electronic device within one hour of bedtime can delay falling asleep for more than an hour.

Another study8 that compared melatonin profiles in individuals exposed to standard room light (<200 lux) versus dim light (<3 lux) found exposure to room light before bedtime shortened the time of elevated melatonin levels by about 90 minutes.

That means it may take you an extra hour and a half before you’re sleepy enough to fall asleep once you’re in bed. Combine room light and electronic displays right before bed and it’s easy to see how sleep may remain elusive for hours on end.

Most of us enjoy watching TV in the evening as a form of relaxation before bed. I certainly do and watch many great Netflix documentaries. The key here is most TVs can’t filter out blue light, but if you use a computer monitor as your TV screen you can use Iris; simply install the blue light filtering software on your computer. This will allow you to safely watch TV at night without suppressing your melatonin.

For Optimal Health, Address Your Daily Light Exposure

The good news is that you can remedy all of these health dangers by modifying your light environment and resynchronizing your body to the natural cycles of light and dark. Here are four key considerations:

1. Replace LEDs in key areas with incandescent light bulbs — While LEDs are indeed more energy efficient, the price you pay in terms of your health far outweigh such cost savings.

In areas where you spend most of your time during the day and evening, such as your kitchen, dining room, living room and office, swap out your LEDs for regular incandescent light bulbs, and leave the LEDs for areas such as hallways, closets, garage and porch, where your exposure to them is minimal.

The key here is KEY areas. You do NOT need to replace all the LED bulbs in your home, only the ones you use all the time. In my case that is my kitchen, bedroom and bathroom. All the other rooms have LEDs that are virtually never turned on, but when they are turned on and someone forgets to turn them off, not much electricity is wasted.

2. Get bright, natural light exposure during the day — Light intensity is important, as it synchronizes your master body clock, comprised of a group of cells in your brain called the suprachiasmatic nuclei. These nuclei synchronize to the light-dark cycle of your environment when certain wavelengths of light enter your eyes.

To get good sleep, you need properly aligned circadian rhythms, and step No. 1 is to make sure you get a sufficient dose of bright light exposure during the daytime. Your pineal gland produces melatonin roughly in approximation to the contrast of bright sun exposure in the day and complete darkness at night.

If you’re in darkness all day long, your body can’t appreciate the difference and will not optimize melatonin production. Ideally, to help your circadian system reset itself, get at least 10 to 15 minutes of light first thing in the morning. This will send a strong message to your internal clock that day has arrived, making it less likely to be confused by weaker light signals later on. Then, around solar noon, get another “dose” of 30 to 60 minutes’ worth of sunlight.

3. Avoid blue enriched light at night — Melatonin acts as a marker of your circadian phase or biological timing. Normally, your brain starts progressively increasing the hormone melatonin around 9 or 10 p.m., which makes you sleepy. Somewhere between 50 and 1,000 lux is the activation range within which light will begin to suppress melatonin production.

However, wavelength is also important. Red and amber lights will not suppress melatonin while blue, green and white lights will. So, be sure to avoid the blue light wavelength after sunset. This includes artificial light, and light emitted by electronics such as your TV, computer and other electronic screens.

There are a number of ways to avoid blue enriched light in the evening depending on your lifestyle and personal preferences, including the following suggestions. You can also learn more by reviewing my 2014 interview with researcher Dan Pardi.

• Turn off or dim all lights after sunset, and avoid watching TV or using light emitting electronics for at least one hour before bedtime (ideally two hours or more).

• After sundown, shift to a low-wattage bulb with yellow, orange or red light if you need illumination. A salt lamp illuminated by a 5-watt bulb is an ideal solution that will not interfere with your melatonin production.

• If using a computer, smartphone or tablet, install blue light-blocking software like Iris,9 or use amber colored glasses that block blue light.10 Studies11,12,13 have confirmed that when using blue-blocking glasses,14 people produce as much melatonin as they do in dim light, even if they’re in a lit room or using light emitting technology.

Other studies15 have shown that people using blue-blocking glasses had major improvements in both sleep quality and mood. Shift workers who use them before bedtime (i.e., in the morning when it’s bright out) also report improved sleep.16

4. Sleep in darkness — Once it’s time to go to sleep, make sure your bedroom is as dark as possible. Exposure to room light during sleep has been shown to suppress melatonin by more than 50%,17 but even a small amount of light can decrease your melatonin. Simply closing your eyes is not enough as light can penetrate your eyelids.

If blackout shades are too great an investment, a sleep mask can do the job for far less money. Also keep in mind that digital alarm clocks with an LED display could have a detrimental effect, so either swap out your clock, or cover the display.

Alternatives include a sun alarm clock, which wakes you up by gradually increasing the intensity of light, thereby simulating sunrise, or a talking alarm clock,18 designed for the visually impaired.

Sources and References

Photo: mercola.com screenshot

This Type of Therapy Can Save Your Eyes

Note: Due to censorship of Dr Mercola’s articles he archives them to paid sub soon after publishing. I’ve therefore published this in its entirety however you may find the source link will no longer work. EWR


Story at-a-glance

  • Blue light damages retinal cells responsible for vision color and clarity, but red and near infrared light help recharge retinal mitochondria and improve sight
  • The retina has the highest energy demand of any part of the body. A lack of red and near infrared light from the sun and overexposure to blue light from LED and digital devices can speed retinal aging
  • Artificial light at the wrong time of the day also impacts sleep quality, which is associated with obesity, heart attack, high blood pressure and depression
  • You can lower your exposure to blue light at home by replacing LED with incandescent bulbs and turning down the blue light in your digital devices at 7 p.m. when the sun naturally sets

Vision is one of your five senses and protecting it has an impact on your overall physical and mental health. Your eye is a complex organ that takes in light bouncing off objects in the environment. Structures in the eye bend and change shape so your brain can interpret your surroundings.

Light first enters through the cornea, which is a clear covering over the eye.1 This functions to protect the eye and to bend the light so it can pass through the dark pupil at the center of your iris, the colored part of the eye. The iris gets larger or smaller, which makes the pupil look smaller or larger, to regulate the amount of light.

Light passes through the lens, which also bends the rays to focus them on the retina at the back of the eye. This structure has tiny light-sensitive nerve cells called cones and rods. The cones are sensitive to color and are in the center of the retina, near the macula.

The rods are sensitive to light intensity and don’t register color.2 They are located outside the macula, extending to the edge of the retina. The cones and rods convert the light into electrical impulses and send them to the brain where your brain perceives an image.

What Causes Visual Loss?

Visual loss or impairment has an impact on a person’s mental and physical well-being. The American Academy of Ophthalmology writes that those with a visual impairment experience a higher risk of some conditions such as depression, social withdrawal and accidents.3

People with vision loss may also experience a higher risk of chronic health conditions such as high blood pressure, heart disease, kidney failure, hearing loss and arthritis.4 As the population ages, the number who have visual impairment or blindness also rises.

The primary causes of visual impairment appear to increase with age. These include cataracts, age-related macular degeneration, glaucoma and diabetic retinopathy.5 Loss of vision at night may not get as much attention as other eye conditions, but it is commonly found in those who are older.

In some, difficulty seeing at night starts around age 40 and may be associated with older individuals who are involved in car crashes.6 There are several reasons people may have impaired night vision, including age-related changes and eye disease:7,8

Smaller pupils — With aging the muscles that control the pupil, the area that allows light into the eye, do not react as quickly or may not be as strong. If the pupil doesn’t dilate enough, you don’t have enough light to see. This makes adapting to seeing out the windshield and back to a brightly-lit car dashboard difficult.
Eye lens — With age, the lens of the eye stiffens and may get less transparent. This doesn’t let enough light pass through, which you experience especially at night.
Rods — The rods in the retina are necessary for sight but may be lost with aging.
Nearsightedness — This may make it hard to see down the road at night while driving.
Medications — Some can slow your pupil’s ability to adapt to changing light conditions.
Nutritional deficiency — A vitamin A deficiency can impair your night vision.
Retinitis pigmentosa — This is a hereditary disease that causes permanent impairment of night vision and peripheral vision. Eventually it can cause significant visual loss in normal light conditions.

Recharge Your Eyes With Long Wavelength Light

In the first-of-its-kind research in humans, a team from University College London led by Glen Jeffery was able to improve declining eyesight using simple light therapy.9 In this short video he describes the interaction between red light and mitochondria, which is the basis for sight improvement.

The researchers were aiming at improving the vision of the large number of seniors who suffer from physical decline and impaired eyesight. In 2020, the team wrote there were 12 million people in the U.K. over age 65, which is expected to increase by another 8 million by 2050.

They estimate all will experience some degree of impairment from aging of the cones and rods in the retina. In the video, Jeffery explains the retina of the eye has a greater energy demand and more mitochondria than other tissues in the body, including the heart. As reported in a press release, he said:10

“As you age your visual system declines significantly, particularly once over 40. Your retinal sensitivity and your colour vision are both gradually undermined, and with an ageing population, this is an increasingly important issue. To try to stem or reverse this decline, we sought to reboot the retina’s ageing cells with short bursts of longwave light.”

The team recruited 24 people ages 28 to 72 years. Each of them was given a device that emitted a red light at 670 nanometers. As Jeffery commented, the mitochondria have the ability to absorb light in longer wavelengths, from 650 nm to 1,000 nm to raise energy production.

However, when the wavelength is above 670 the light is difficult for the human eye to see, which could potentially impact compliance. As a result of the high energy demands, the mitochondria in the retina age faster than other areas of the body. This causes a significant reduction in function.11 The participants took a device home, which they used for three minutes each day for two weeks.

Their rod and cone sensitivity were tested before and after the intervention. They found participants younger than 40 exhibited no difference in sensitivity. However, those older than 40 showed some significant improvement in color contrast and the ability to see in low light. Jeffery concluded:12

“Our study shows that it is possible to significantly improve vision that has declined in aged individuals using simple brief exposures to light wavelengths that recharge the energy system that has declined in the retina cells, rather like re-charging a battery.

The technology is simple and very safe, using a deep red light of a specific wavelength, that is absorbed by mitochondria in the retina that supply energy for cellular function. Our devices cost about £12 to make, so the technology is highly accessible to members of the public.”

Indoor Living Raises Risk of Light Pollution

It’s important to remember that not all light is the same. In fact, artificial light at the wrong time of the day can significantly impact sleep quality. It’s called light pollution and it can result in sleep deprivation that ultimately affects your immune system. There is a steep cost to sleep deprivation, including obesity, high blood pressure, diabetes, heart attack and depression.13

One of the side effects of spending hours indoors is a lack of exposure to the sun. The bright light emitted by LED lights and streetlamps is not full-spectrum: Full-spectrum light comes from the sun.14

Hormones and bodily functions operate on a circadian rhythm, which is attached to a 24-hour day-night cycle and light. Your hormones that regulate digestion, metabolism and sleep are affected by your circadian rhythm.15 Ultimately, your circadian rhythm is affected by exposure to sunlight.

For example, the hormone melatonin should rise at night to encourage quality sleep.16 Exposure to bright sunlight in the morning helps regulate the release of melatonin and affects your sleep cycle. In a recent preprint paper, researchers suggest that lockdowns instigated by COVID-19 have mitigated the protective role of ultraviolet light from the sun by up to 95%.17

There is a link between blue light and circadian rhythms.18 The sun provides a full spectrum of light, and thus includes blue light. A reduction in the intensity of sunlight during the winter months may suppress melatonin and result in feelings of listlessness, sleepiness and in some, depression.

As well as reducing your exposure to full spectrum light, including infrared light from 650 nm to 1000 nm, spending hours indoors increases your exposure to blue light. Although blue light in the early hours of the day helps shut off melatonin production, continued exposure after sunset has deleterious effects on health.

Red Light, Blue Light

With the production and distribution of energy-efficient LED lights, many are exposed for longer hours to blue light without a balance of red or near-infrared light. For this reason, incandescent lights are safer as they emit the longer wavelength red and near-infrared light and only emit a bit of blue.19

The damage blue light does to the retina has been known for years. In one study published in 1995, researchers wrote, “Exposure of the eye to intense light, particularly blue light, can cause irreversible, oxygen dependent damage to the retina.”20

More recently, data from a study involving animals has suggested that blue light increases retinal damage and apoptotic cell death. In this study, the damage induced greater cone cell death than rod cell death.21 The blue light emitted by LED lights is the main component scientists are concerned with regarding vision and the health of the retina.

Experts find that the blue light component in energy-efficient LED lights is “the major cause of retinal damage,” inducing “oxidative stress and retinal injury” as well as “photoreceptor death by necrosis and apoptosis.”22

How to Use Light at Home

Researchers from Oregon State University in collaboration with The Ohio State University found prolonged exposure to blue light may also affect your brain, even when blue light is not shining through your eyes.23

There are some important steps you can take to protect your eyesight and overall health. While it’s important to get blue light first thing in the morning to shut off melatonin production, it’s just as important to reduce exposure after 7 p.m. when the sun naturally begins to set.

There are several ways to accomplish this, depending on your personal preferences. Many digital devices have software that can reduce the blue light emitted by the screen. When you do this on all electronic devices and you replace all LED lights with incandescent bulbs, you won’t need blue blocking sunglasses indoors.

However, if you don’t have control over lighting, then it’s important to strongly consider using blue-blocking glasses after 7 p.m. This will help regulate your internal clock and reduce damage to your eyes.

Outdoor street lighting and alarm clocks are other ways you’re exposed to light after dark. The quality of sleep you get is linked to resting in total darkness. Consider removing all light-emitting devices and using a sleep mask and room-darkening blinds.

On the other hand, during the daylight hours, it’s important to get sensible sun exposure for eye health and to help raise your vitamin D production. If you find it difficult to fall asleep and stay asleep, you may need to make a few more changes using strategies I suggest in “Top 33 Tips to Optimize Your Sleep Routine.”

SOURCE

Photo: pixabay.com